Bayesian hierarchical models as a path for analysis of individual and group data

New Sounds 2022

Ronaldo Lima Jr.

ronaldojr@letras.ufc.br
ronaldolimajr.github.io

Federal University of Ceará

Outline

1. Problem

- 2. Suggestions
 - $i. \ Hierarchical/Multilevel/Mixed-effets \ models$
 - ii. Bayesian models

Terminology

- Mixed-effects model
- Mixed model
- Random-effects model
- Hierarchical model
- Multilevel model

Problem

L2 speech data

- We usually collect a lot of data from the same speakers
- We want to model language development as a whole
 - The market needs generalizations (book editors, teachers, teacher trainers, proficiency tests, etc.)
- However, language development isn't the same for everyone, rather it is
 - complex, dynamic, non-linear and emergent
 - in several ways, it is idiosyncratic
- So, how do we look into L2 speech data?

Individual data

→ Look at individual data?

Individual data

Individual data

 \rightarrow Impossible to make generalizations

Group data

→ Calculate (Euclidean) distances between (means of) vowels in each pair, for each speaker, at each recording

Group data for [i 1]

$$\rightarrow f(3) = 0.035; p = 0.991$$

But...

Straight line?

Individual or group data?

- We can't model L2 (speech) development according to individual trends (overfitting)
- We can't model L2 (speech) development according to ground tendency alone (underfitting)
- → Suggestion: Look into both

Suggestions

Hierarchical/Multilevel/Mixed-effets model

https://xkcd.com/2533/

Sum of Euclidean Distances

→ Did adding the varying terms change the line?
Not really, but it changed the confidence of model about the line:

Sum of Euclidean Distances

→ Did adding the varying terms change the line? Not really, but it changed the confidence of model about the line:

→ As a result:

Predictors	Estimates	CI	р	Estimates	CI	р
Intercept	1.16	0.60 - 1.72	< 0.001	1.16	0.90 - 1.42	< 0.001
recording	0.14	-0.06 - 0.35	0.162	0.14	0.00 - 0.29	0.048

Varying intercepts and slopes

→Also, a mixed-effects model can predict different lines for each subject

Why Bayesian?

- \rightarrow Probability of the parameters (hypotheses) given the data (instead of probability of the data given the H_0)
- → Probability distributions for coefficients (instead of point estimates)
- → Credible intervals
 (instead of confidence intervals)
- → Add prior information/knowledge to the model (instead of all outcomes having equal probability a priori)

Bayesian mixed-effects

Predictors	Estimates	50% CI	95% CI
Intercept	1.16	1.07 - 1.26	0.86 - 1.47
Recording	0.14	0.09 - 0.20	-0.04 - 0.31

Bayesian mixed-effects

- \rightarrow 6% of AUC (area under the curve) below 0
- → This analysis adds the uncertainty needed when inferring population values from limited samples

Bayesian mixed-effects: predicted values

Bayesian mixed-effects

→Several (in this case, 100) probable lines predicted by the model sampled from the posterior distribution (instead of a single line)

It doesn't have to be lines

It doesn't have to be lines

- "linear" in math does not mean a 1:1 relationship, nor does it mean a straight line
- → It means addition of terms
 - There are (linear) regression models that predict curves by adding specific terms to the regression formula. E.g.:
 - Polynomial regressions (quadratic, cubic, etc.)
 - Splines
 - Generalized Additive Models (GAMs)

