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1. Problem

2. Suggestions
i. Hierarchical /Multilevel /Mixed-effets models

ii. Bayesian models



Terminology

Mixed-effects model

Mixed model

Random-effects model

Hierarchical model

Multilevel model

https://twitter.com/chelseaparlett/status/14584617374311465007s=

21&t=6A3Ftp2BDfdT5U99k5qzBA


https://twitter.com/chelseaparlett/status/1458461737431146500?s=21&t=6A3Ftp2BDfdT5U99k5qzBA
https://twitter.com/chelseaparlett/status/1458461737431146500?s=21&t=6A3Ftp2BDfdT5U99k5qzBA

Problem



L2 speech a

We usually collect a lot of data from the same speakers
e We want to model language development as a whole

e The market needs generalizations (book editors, teachers, teacher trainers, proficiency tests,
etc.)

However, language development isn't the same for everyone, rather it is

e complex, dynamic, non-linear and emergent
e in several ways, it is idiosyncratic

e So, how do we look into L2 speech data?



Individual data

— Look at individual data?
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Individual data
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Individual data

Spkr A, Reg 14, norm
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Recording!

Recording?

Recording3

Recording
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— 10 speakers!

— Impossible to make generalizations
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Group data
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— Calculate (Euclidean) distances between
(means of ) vowels in each pair, for each
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speaker, at each recording
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Group data for [i 1]
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£(3) =0.035; p = 0.991
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Eucidean distances [i1]

Recordings

Euclidean distances [e z]
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Individual or group data?

e We can’t model L2 (speech) development according to individual trends (overfitting)

e We can’'t model L2 (speech) development according to ground tendency alone
(underfitting)

— Suggestion: Look into both
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Suggestions
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DARN, NOT SIGNIFICANT.

WE NEED MORE DATA.

HAVE THEM EACH TRY

YELLING INTD THE MIC
FEhJHORE TIMES.
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https://xkcd.com/2533/

Hierarchical /Multilevel /Mixed-effets model
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https://xkcd.com/2533/

Sum of Euclidean Distances

Individual trends Linear model (no mixed effects)  Varying intercepts/slopes

W
! !

— Did adding the varying terms change the line?

Not really, but it changed the confidence of model about the line:
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Sum of Euclidean Distances

—» Did adding the varying terms change the line?
Not really, but it changed the confidence of model about the line:

1|> fit 1 = lm(sum ~ recording) 1|> fit2 = Ilmer(sum ~ recording + (recording|speaker))
2 | > summary(fitl) 2 | > summary(fit2)
3 | Coefficients: 3 | Fixed effects:
4 Estimate Std. Error t value 4 Estimate Std. Error df t value
5 | (Intercept) 1.1605 0.2767 4.195 5 | (Intercept) 1.16050 0.12993 15.49896 8.932
6 | recording 0.1439 0.1010 1.424 6 | recording 0.14390 0.07027 9.81783 2.048
> As a result:
Predictors Estimates Ci p Estimates Ci p
Intercept 1.16 0.60 -1.72 <0.001 1.16 0.90-142 <0.001
recording 0.14 -0.06 - 0.35 0.162 0.14 0.00-0.29 0.048
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Varying intercepts and slopes

A B D E F

Also, a

mixed-effects
model can predict
different lines for

Sum of euclidean distances

each subject
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Why Bayesian?

— Probability of the parameters (hypotheses) given the data
(instead of probability of the data given the Hy)
> Probability distributions for coefficients
(instead of point estimates)
— Credible intervals
(instead of confidence intervals)
> Add prior information/knowledge to the model

(instead of all outcomes having equal probability a priori)
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Bayesian mixed-effects

Predictors Estimates 50% CI 95% ClI
Intercept 1.16 1.07-126 0.86-1.47
Recording 0.14 0.09-0.20 -0.04-0.31

nnnnnnnnn
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Bayesian mixed-effects

— 6% of AUC (area under
recoring the curve) below 0

—» This analysis adds the
uncertainty needed
when inferring
population values from

Intercept limited samples
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Bayesian mixed-effects: predicted values

predicted sum of Euclidean Distances

recording
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Bayesian mixed-effects
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It doesn’t have to be lines

1 | geom_smooth(method = 1m) 1 | geom_smooth(method = loess)
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It doesn’t have to be lines

e ‘“linear” in math does not mean a 1:1 relationship, nor does it mean a straight line

— It means addition of terms

e There are (linear) regression models that predict curves by adding specific terms to the
regression formula. E.g.:
e Polynomial regressions (quadratic, cubic, etc.)

e Splines
e Generalized Additive Models (GAMs)
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Questions?
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